

Abstracts

Precise Design of a Bandpass Filter Using High-Q Dielectric Ring Resonators

Y. Kobayashi and M. Minegishi. "Precise Design of a Bandpass Filter Using High-Q Dielectric Ring Resonators." 1987 Transactions on Microwave Theory and Techniques 35.12 (Dec. 1987 [T-MTT] (1987 Symposium Issue)): 1156-1160.

A precise design is presented for a bandpass filter constructed by placing TE₀₁ dielectric ring resonators coaxially in a TE₀₁ cutoff circular waveguide. On the basis of a rigorous analysis by the mode-matching technique, the interresonator coupling coefficients are determined accurately from the calculation of two resonant frequencies f_{sh} and f_{op} when the structurally symmetric plane is short- and open-circuited. For the TE₀₁ ring resonator, the resonant frequency f_0 , the temperature coefficient τ_f , the unloaded $Q(Q_u)$, and the other resonances are also calculated accurately in a similar way. From the calculations, the optimum dimensions are determined to obtain the maximum Q_u , as $F_r = f_r/f_0$ is kept constant, where f_r is the next higher resonant frequency the ring resonator using low-loss ceramics ($\epsilon_r = 24.3$, $\tan \delta = 5 \times 10^{-5}$) has $Q_u = 16800$ at 12 GHz and $\tau_f = 0.1 \pm 0.5$ ppm/°C, while the rod one has $Q_u = 14700$. A four-stage Chebyshev filter having ripple of 0.04 dB and equiripple bandwidth of 27.3 MHz at $f_0 = 11.958$ GHz is fabricated using these resonator; the measured frequency responses agree well with theory. The insertion loss is 0.9 dB, which corresponds to $Q_u = 9800$.

[Return to main document.](#)

Click on title for a complete paper.